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Detecting Generalization Barriers for
Understanding Neural Machine Translation

Anonymous EMNLP submission

Abstract

In machine translation evaluation, the tradi-
tional wisdom measures model’s generaliza-
tion ability in an average sense, for example
by using corpus BLEU. However, the statis-
tics of corpus BLEU cannot provide compre-
hensive understanding and fine-grained analy-
sis on model’s generalization ability. As a rem-
edy, this paper attempts to understand NMT
at word level, by detecting generalization bar-
rier words within an unseen input sentence that
cause the degradation of generalization. It pro-
poses a principled definition of generalization
barrier words as well as a modified version
which is tractable in computation. Based on
the modified one, three simple methods are
proposed for barrier detection by search-aware
risk estimation through counterfactual gener-
ation. Extensive analyses are conducted on
those detected generalization barrier words on
both Zh⇔En NIST benchmarks. Potential us-
age of barrier words is also discussed.

1 Introduction

The performance of neural machine translation
(NMT) models has been boosted significantly
through novel architectural attempts (Gehring et al.,
2017; Vaswani et al., 2017), carefully-designed
learning strategies (Ott et al., 2018), and semi-
supervised techniques that smartly increase the size
of training corpous (Edunov et al., 2018; Ng et al.,
2019). However, all these improvements are mea-
sured in an average sense on a held-out dataset by
using corpus BLEU (Papineni et al., 2002) and one
potential limitation may stand out for understand-
ing NMT. The average case analysis only covers the
mean data population and does not provide much
fine-grained information on questions like why an
unseen input hinders model’s generalization and
what properties such an input has, which are im-
portant to understand NMT and receiving great

attention in the community of trustworthy deep
learning (Amodei et al., 2016; Jia et al., 2019).

One possible solution to mitigate the above limi-
tation is to analyze the property of the unseen input
sentence as a whole as the so-called instance-level
analysis. This is similar to recent renaissance of
out-of-distribution detection in the task of image
classification (Chandola et al., 2009; Hendrycks
and Gimpel, 2017; Liang et al., 2017). Neverthe-
less, for the task of machine translation, since an
input sentence consists of many words, it is not rea-
sonable to regard the whole sentence as an anomaly
since we find that the overall generalization of the
model is mostly affected by a few words and modi-
fying them can improve translation quality largely.
This phenomenon is shown in Figure 1, where by
changing quēxiàn to some other words, the input
sentence can be translated much better, reaching
better sentence-level BLEU in the orange band in
Figure 1. Therefore, it would be more appropriate
to automatically detect those generalization barrier
words for understanding NMT at word level, e.g.
the words within an input which hinder the overall
generalization of that sentence.

To this end, we firstly give a principled definition
of generalization barrier in a counterfactual (Pearl
and Mackenzie, 2018) way for understanding NMT
at word level. Since the principled definition re-
quires human evaluation, we instead provide a mod-
ified definition based on novel statistics, which em-
ploy automatic evaluation to detect generalization
barrier words. As it is costly to exactly compute the
statistics, we propose three estimators to approxi-
mately calculate the value. Based on the estimated
value, we conduct experiments on two benchmarks
to detect potential barriers in each unseen input sen-
tence. In addition, we carry out systematic analyses
on the detected barriers from different perspectives.
We find that generalization barrier words are perva-
sive among different linguistic categories (Part-of-
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Speech) and very different from previously known
troublesome source words (Zhao et al., 2018, 2019).
By aggregating local barrier statistics, we find that
barrier words are very context-sensitive, so they
might be inevitable from current training paradigm.
Moreover, the notion of barrier words motivates
us to obtain more diversified hypothesis candidates
via input editing. This might be a better choice for
re-ranking (Yee et al., 2019) than the top-k outputs
under one steady input via beam search.

2 Related Literature

Troublesome words detection To our knowledge,
back to the old SMT era, Mohit and Hwa (2007) is
the most related work which invents the notion of
‘hard-to-translate phrase’ at source side, and uses
removal to determine its effect on model general-
ization on other phrases’ translation, which is very
similar to our usage of counterfactual generation
by editing the source words. Recently, Zhao et al.
(2018, 2019) are the first to detect trouble makers at
source side globally for NMT. In Zhao et al. (2018),
the troublesome source words are detected through
an exception rate defined as the number of trouble-
some alignments (xi, yj) dividing the number of
xi, where the troublesome alignments are obtained
through an extrinsic statistical aligner instead of
the trained NMT model. In Zhao et al. (2019),
the troublesome source words are constrained to
words with high translation entropy which tend to
be under-translated by the model. Both of their
trouble detection heuristics are: 1) context-unware,
globally applied on every source words without
considering the context of the words, and 2) model-
unaware, dependent on extrinsic statistical assump-
tions. In our work, we are trying to detect both
context-aware and model-specific generalization
barriers for every unseen source input.
Out-of-Distribution (OOD) detection OOD de-
tection, Novelty (Markou and Singh, 2003), Out-
lier (Hodge and Austin, 2004) or Anomaly Detec-
tion (Chandola et al., 2009) care about how likely
the unseen input as a whole is to be sample differ-
ent from the training distribution. This problem
is recently revived on the task of image classifica-
tion (Hendrycks and Gimpel, 2017; Liang et al.,
2017; Choi et al., 2018). Although recently, Ren
et al. (2019) starts to consider OOD detection on
sequential data, i.e. gene fragments, they still re-
gard the input feature as a holistic vehicle to cause
the mismatch in underlying generative distribution.

Our work is motivated from this OOD detection lit-
erature in the spirit of detecting the inputs that the
model cannot generalize well upon. Beyond that,
due to the structural property of the translation task,
we also carry out a more fine-grained detection of
causes that could be a part of the input feature,
which can potentially consist of several high risky
words. Notably, researchers from OOD detection
recently start to focus on structure of the input and
design benchmarks for such detection task for im-
age anomaly segmentation which focuses on small
patches in the image (Hendrycks et al., 2019).
Error analysis and interpretability Recently, Wu
et al. (2019) propose to conduct error analysis with
three principles by heart: scalable, reproducible
and counterfactual for natural language processing
tasks. These principles also guide the computa-
tional consideration of our detection method. For
NMT, recently, Lei et al. (2019) are the first to
focus on accurately detecting wrong and missing
translation of certain source words. Different from
their work which detects the unsatisfactorily trans-
lated source words themselves, our work focuses
on detecting the cause of them, and serves as com-
plementary to recent interpretability analysis of
importance words (He et al., 2019).

3 Generalization Barriers

Mainstream NMT is formulated as a sequence-to-
sequence structured prediction problem (Sutskever
et al., 2014). Like all other structured prediction
problems with a scoring function and a decoding
algorithm (Daumé III, 2006), for NMT, P (y|x; θ)
acts as the scoring function and beam search is used
as the (approximate) decoding algorithm. Since
beam search is a deterministic algorithm with a pre-
set beam size, the prediction ŷ is solely determined
by the input x, denoted as a map ŷ =Mθ̂(x). Un-
der this setting, we are actually interested in the
following causal question: how the input x causes
the model’s failure on the prediction?

The input of NMT model x = (x1, . . . , xm) is a
sequence with subsequences composed to form its
whole semantics. The cause of the model’s general-
ization degradation should be attributed to some of
the subsequences or their ways of composition. For
example, in Figure 1, by changing the subsequence
quēxiàn to another word (for examples, bùhǎo,
sǔnhuài or gen̄jùn) can make the not-well translated
subsequences (marked as underlined subsequences
in the original hypo) to be well-translated. There-
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基因 科学家 的 ⽬标 是 , 提供 诊断 ⼯具 以 发现 致病 的 缺陷 基因 , 终 ⽽ 提供 可 阻⽌ 这些 基因 产⽣ 障碍 的 疗法 。

the goal of geneticists is to provide diagnostic tools to identify defective genes that cause diseases so as to arrive eventually at 
treatments that can prevent those genes from malfunctioning .

the goal of genetic scientists is to provide diagnostic tools to discover the defects of the disease and , in the end , to provide 
treatments that can prevent the production of these genes .

Source

Reference

Original
Hypothesis

Much better
Hypothesis

the goal of gene scientists is to provide diagnostic tools to detect genes that cause diseases , and eventually provide treatments 
that can prevent these genes from producing obstacles .

(a)

(b)

quēxiàn

edit to

zhěnduàn

better
generalization

不好
bùhǎo

损坏
sǔnhuài

根据
gēnjù… …

truncated meanS>mo
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

S
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

orange band

Figure 1: (a). Each histogram represents |V| sentence-level BLEU scores via |V| number of editing choices on
the source word at the top. The x-axis is the BLEU spectrum 0.1-0.4 divided into 50 bins; the y-axis denotes the
number of edits that fall into certain BLEU bin; the vertical dotted line is the metric value of the original hypothesis.
(b). A list of the example source sentence, its reference, the original hypothesis and the improved hypothesis via
editing the generalization barrier word quēxiàn. (This figure is better viewed with color.)

fore, one perspective to shed light on the above
how question is to try to detect the set of all sub-
sequences of x that might potentially deteriorate
model’s generalization, which we dub generaliza-
tion barriers (such as quēxiàn in Figure 1). In the
following subsections, we firstly give an abstract
yet principled definition of generalization barriers.
Then we relax this definition to obtain an approxi-
mate but tractable version by treating each source
word independently without considering their pos-
sible combinatorial compositions. Finally we con-
struct statistics for each source word to measure its
risk of being a generalization barrier word.

3.1 A definition with human effort
The principled definition of generalization barriers
is based on the intuition that the model can poten-
tially generalize well on some edited versions of x,
i.e. with word substitutions and deletions that aims
at preserving the original symbolic compositional
structure (e.g. word order) and semantics of x as
much as possible. This intuition also matches with
the causal question we have asked before, since
we are actually generating counterfactuals through

intervening (editing) x (Chang et al., 2018; Goyal
et al., 2019). Formally, we define generalization
barrier words in x as follows.

Definition 3.1. (Generalization Barriers) Given
an NMT model trained on Dtr with θ̂, a distance
measure d : X × X 7→ R, e.g. the edit distance,
for an input x, we call the set of subsequences,
∪(x \ x̃), that satisfy the following constraints as
generalization barriers of x.

1. The distance measure d(x, x̃) is minimized;

2. Human evaluation of the translation quality
onMθ̂(x̃) reaches a satisfactory level.

where the operator \ returns a subsequence of x
by removing their overlapped words and ∪ denotes
the union of subsequences. As an example in Fig-
ure 1, editing quēxiàn to each word among bùhǎo,
sǔnhuài and gen̄jùn leads to much better transla-
tion. Therefore, x̃ can denote the source by editing
quēxiàn, and the generalization barrier word of x
is x \ x̃ = {quēxiàn}, including a single word.

Although this definition requires human efforts,
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we think it is principled and can be of independent
interest for human study.

3.2 Approximating the definition with
exhaustive counterfactuals

To scale up the above definition, we further make
assumptions to modify it: a) the minimization of d
is purposefully set to d = 1, which restricts the
search space tremendously by only editing one
word for investigating its possibility of being a
barrier; b) the human evaluation is replaced by au-
tomatic evaluation with a metric such as smoothed
sentence-level BLEU (Lin and Och, 2004), since
d = 1 roughly leads to an unchanged reference y.

According to the modification, we now investi-
gate each source word xi independently by coun-
terfactual generation as well. Instead of finding
one single counterfactual x̃ which might be unsuit-
able for human to perceive as a natural sentence,
inspired by Burns et al. (2019) and Chang et al.
(2018) who edit certain patch in an image with
potentially infinitely infilling patches and compute
importance score of the original patch in expec-
tation, we also generate as many edit choices as
possible so that some edits are natural.

Suppose |V| is the size of the source vocabulary,
Edit(x, i) denotes the set of all sentences by edit-
ing word xi. Accordingly, the size of Edit(x, i) is
|V|, which corresponds to one deletion and |V| -
1 substitutions. Then we can actually obtain |V|
counterfactual performance measures:

S = {BLEU(Mθ̂(x̃), y)|x̃ ∈ Edit(x, i)}, (1)

based on which we can draw a histogram with
binned metric values, with vertical axis denoting
the number of edits that can lead to certain perfor-
mance. Figure 1 is a showcase for a given input
sentence, we conduct |V| real decoding for each of
the 28 words and plot the corresponding histograms
of six words, with the first row represents words
that always degrade the performance, and second
row words mostly improve performance through
editing. We regard each histogram as a distribution
of the counterfactual generalization performances.

As we can identify in Figure 1, the right-hand
side orange band of a histogram (if exists) shows
the counterfactuals with better generalization, and
if that part dominates the distribution, we can con-
clude that the word being edited has a high risk of
causing the degradation of generalization on x. In
practice, we use the empirical truncated mean at

position i to represent the word xi’s risk of being a
generalization barrier word as follows:

tm(xi) =
1

|S>mo |
∑

v∈S>mo
v, (2)

where S>mo = {v|v > mo, v ∈ S} and mo =
BLEU(Mθ̂(x), y). In Figure 1, the set S>mo cor-
responds to the orange band in the histogram; mo

is 0.262 in the example, corresponding to the dot-
ted black vertical line in each histogram; the trun-
cated mean of each word is presented above the his-
togram, for example, the word quēxiàn has a high
truncated mean of 0.30 which is above 4 BLEU
points than the original performance. The higher
the risk, the more likely that word being a gener-
alization barrier word. In Figure 1, the truncated
mean (tm) is shown above each histogram, with the
value 0 denotes that position has no orange band.

Definition 3.2. (Generalization Barrier Words)
The generalization barrier words in x tend to be
the words with top-k% truncated mean tm(xi).

In practice it is hard to determine whether a trun-
cated mean reaches a satisfactory level, so we use a
soft one, the top-k% risky words, for deciding the
potential generalization barrier words.

Algorithm 1: Evaluate the risk of xi
Input:

A risk estimator S;
an unseen pair x, y, position i, budget B, b;
the learned NMT model P (y|x; θ̂),
the source embedding Emb ∈ R|V|×d;

Output:
The estimated truncated mean tm(xi);

1: Initialize Ci = {};
2: if S = Uniform then
3: Uniformly sample b elements from Edit(x, i),

and add them to Ci;
4: else if S = Stratified then
5: Uniformly sample B elements from Edit(x, i) as Ci0;
6: Compute Lθ̂(x̃) in Eq.(3) for each x̃ ∈ Ci0;
7: Use sx̃ ∝ 1/Lθ̂(x̃) to choose the top-b elements

in Ci0, and add them to Ci;
8: else if S = Gradient-aware then
9: Compute Eq. (4) to get Emb′(xi);

10: Use softmax(Emb · Emb′(xi)) to sample b
elements from Edit(x, i), and add them to Ci;

11: end if
12: Conduct real decoding on Ci and compute

tm(xi) supported on Ci rather than Edit(x, i).
13: return tm(xi);

3.3 Estimating truncated mean
According to the definition in Eq.(2) and Eq.(1),
one has to decode each x̃ ∈ Edit(x, i) and there are
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|V| sentences in total. Unfortunately, as it takes
a few seconds for each decoding, it is impractical
to exactly calculate S as well as S>mo As a result,
we instead propose a simple yet effective algorithm
as an inexact solution. The key idea to the inex-
act solution is to call the decoder b times, with b
as a budget. Specifically, we randomly sample b
elements from Edit(x, i) to obtain a sample set Ci.
Then we calculate both S and S>mo supported on
Ci. Finally we can approximately calculate tm(xi)
by enumerating at most b elements in S>mo . To
randomly sample b elements from Edit(x, i), we
pre-define three distributions heuristically, which
lead to three different estimators as follows.
Uniform A very simple unbiased estimator of
tm(xi) is to uniformly b elements from Edit(x, i),
and compute the mean of those ms that are larger
than mo. However, since we do not restrict the sub-
stitutions, two potential issues might lead to large
variance of uniform sampling: a) waste of budget:
substitutions that lead to metric values lower than
mo could be more; b) hardness of coverage (less
concentrated): wider the range of the orange band
(in the histogram of Figure 1), larger the variance.
Stratified To be less stochastic to combat variance,
we can first use uniform sampling for randomly
picking B elements from Edit(x, i), and then use
the loss function

Lθ̂(x̃) := − logP (y|x̃; θ̂) (3)

as a surrogate to choose the top-b from the B
choices. The first stage respects the uniform dis-
tribution in Edit(x, i), while the second stage is
deterministic (i.e., top-b likelihood values) which
can potentially lower the variance.
Gradient-aware To avoid the sampling budget
hyper-parameter B at the first stage of the stratified
method, we can utilize the gradient of the original
loss Lθ̂(x) which guides the change of embeddings
of xi that can minimize the loss:

Emb′(xi) = Emb(xi)− 1.0 · ∇Emb(xi)Lθ̂(x). (4)

Contrary to the method of adversarially modifying
the input in Cheng et al. (2019), we conduct 1-step
gradient update with learning rate 1.0 to minimize
the original loss, and then use the normalized dot
product similarity between the updated embedding
and all other embeddings of the source vocabulary
to bias the sampling of b elements from Edit(x, i).

The entire algorithmic procedures of the three es-
timators are summarized succinctly in Algorithm 1.

second per sentence
budget b 5 10 25 50 100 250 500 1000
time cost 4 7 17 33 65 180 360 > 600

Table 1: The time complexity for the uniform estimator
among different budgets; note that the time cost is an
average measure over each sentence.

4 Experimental Conditions

Data settings We conduct experiments on Zh⇒En
and En⇒Zh translation tasks using the well-known
NIST benchmark. The development and test
datasets of the NIST benchmark are marked by
year, e.g. NIST02 (dev), NIST03 etc. For Zh⇒En,
each dev/test source sentence has four references;
and for En⇒Zh, we pick the first source input of
the four as the source-side instance. During the
truncated mean estimation stage, for the Zh⇒En
translation task, we use the first reference as the
ground truth in sentence-level BLEU calculation.
Model settings We consider three types of basic
model architectures proposed in Luong and Man-
ning (2015); Gehring et al. (2017); Vaswani et al.
(2017) respectively, representing the advancement
of architectural inductive bias in recent years. Their
average performance over NIST03, 04, 05, 06, 08
are summarized in Table 7 in Appendix A.1.

5 Comparing Estimators 1

We conduct simulation experiments among 50 un-
seen sentence pairs from NIST03 with whole vo-
cabulary decoding to compute the ground truth
truncated mean for each xi with Eq. (2), and
then compare the above proposed sampling meth-
ods in terms of overlap@k%, variance or rank
stability of the estimator under different budgets
b = 5, 10, 25, 50, 100, 250, 500, 1000, 5000. For
the stratified strategy, we set B to 500 for b < 500
budgets, B = 1000 for b = 500, B = 2000 for
b = 1000, and B = 10000 for 5000. To be sta-
tistically significant, for each source word xi, we
repeat the estimation procedure for r = 25 times.
Accuracy We use the overlap@k% metric to mea-
sure the similarity between top-k% risky words
with exact and approximate risk calculation meth-
ods. As demonstrated in Figure 2, different meth-
ods lead to very overlapped performance. And
with a budget larger than 100, it can lead to an av-
erage overlap@k% around 85%, based on which

1More detailed informations about the evaluation metrics
used in this subsection are in Appendix A.2.



6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 2: The overlap@k% metric values over the three
proposed estimation methods on the 50 samples under
different budgets (5 to 5000); k is set to 10, 20, 30(%).

5 10 25 50 100 250 500 1000 5000
budget

0.6

0.7

0.8

0.9

Ke
nd

al
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k 

co
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da

nc
e

rank stability (repeat=25)
uniform
stratified/topb
gradient

Figure 3: The rank stability of the three proposed esti-
mation methods under different budgets. They are av-
eraged over the 50 chosen samples and measures the
variance of methods over 25 repeated experiments.

we think is enough for the subsequent analyses.
Variance The rank stability is measured through
Kendall’s coefficient of concordance (Mazurek,
2011) which essentially calculates the similarity
among different (repeat=25) ranks of the same sam-
ple. The larger the value is, the more consistent
among different runs the ranks stay, thus smaller
variance. In Figure 3, the uniform and gradient-
aware estimators have similar variance while the
stratified estimator has lower variance, which might
be benefited from its second deterministic stage.
Complexity We also summarize the time cost of
each budget b in Table 1. Since most of the time
complexity comes from real decoding, here we only
measure the time cost of the uniform estimator. We
test the process on a single M40 GPU.

As a trade-off between accuracy, variance and
time complexity, we adopt the stratified strategy
with budget B = 500, b = 100 as our approximate

POS cat. k=10% k=20% k=30% base
BPE 14.32%− 15.10%− 15.28%− 15.33%
Noun 16.52% − 16.23%− 15.83%− 17.63%

Prop. N. 6.56%− 6.75%− 6.37%− 7.44%
Pron. 1.75% − 1.91%− 2.32%− 2.35%
Verb 18.37%+ 18.33%− 18.56%+ 18.36%
Adj. 2.50%− 2.56%− 2.60%− 3.19%
Adv. 4.30%+ 4.27%+ 4.14%+ 4.07%

::::
Prep.

:::::
4.70%+

:::::
4.65%+

:::::
4.58%+

::::
3.83%

::::
Punc.

::::::
16.65%+

::::::
14.49%+

::::::
14.40%+

:::::
11.44%

Q&M 3.95%− 4.49%− 4.59%− 4.87%
C&C 1.84%− 1.79%− 1.99%− 2.23%

(a) on NIST03 Zh⇒En direction

POS cat. k=10% k=20% k=30% base
BPE 9.80%− 10.74%− 11.26%− 12.00%
Noun 22.17%− 22.43%− 21.85%− 24.07%
Pron. 1.94%− 2.18%+ 2.26%+ 2.15%
Verb 11.57%+ 11.28%+ 11.00%− 11.26%
Adj. 6.74%− 7.19%− 7.26%− 8.19%
Adv. 3.24%+ 3.07%+ 2.83%− 2.93%

::::
Prep.

::::::
12.94%+

::::::
13.05%+

::::::
13.39%+

:::::
11.88%

::::
Punc.

::::::
16.04%+

::::::
13.98%+

::::::
13.30%+

:::::
10.41%

Det. 8.11%− 8.84%− 9.42%+ 9.05%
C&C 1.94%− 2.06%− 2.05%− 2.20%

(b) on NIST03 En⇒Zh direction

Table 2: Distribution of the detected generalization bar-
rier words according to POS category.

detection method in all subsequent analyses. This
takes around 16 hours for 1k sentences with a de-
cent detection accuracy around 85% with respect
to overlap@k% and nice rank stability up to 84%.

6 Characterizing the Generalization
Barrier Words

6.1 Part-of-Speech distribution

In this part, we summarize the distribution of the
detected generalization barrier words with respect
to their Part-of-Speech (POS) tags. In order to con-
sider the subword segments, we first use a POS
tagger to label on the BPE-restored corpus, and
then map the non-subword segments to the corre-
sponding POS tags while the subword segments
to a special tag named BPE, so that we can read-
ily measure the ratio of subwords. The summary
statistics are shown in Table 2. To compare with the
natural distribution of all the words over POS, we
also demonstrate them together with the detected
generalization barrier words at the base column.

For both Chinese and English source inputs, bar-
rier words are pervasive across all POS categories,
since there is no significant difference from the
base distribution. Note that, functional words like
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Task Word cat. k=10% k=20% k=30%

Zh⇒En

Random 8.39% 17.04% 26.93%
Frequency 8.10% 18.27% 26.91%
Entropy 7.58% 18.42% 28.53%

Exception 8.19% 17.14% 27.49%

En⇒Zh

Random 7.77% 17.60% 27.32%
Frequency 8.57% 17.37% 25.29%
Entropy 8.85% 18.71% 29.97%

Exception 8.18% 17.96% 26.79%

Table 3: The overlap@k% metric with respect to differ-
ent types of troublesome word statistics which due not
utilize real decoding.

preposition and punctuation increase the most (with
3 +) over the base. For English source, BPE is less
tended to be barriers which indicate the benefit
of subword-based segmentation. And for content
words like noun and proper noun, they tend to be
relatively less ambiguous and less context depen-
dent thus tend to cause less problems.

6.2 Comparing to other source word
categorizations

In this part, we compare the detected generalization
barrier words with other source word categoriza-
tions: a) low-frequency words; b) high translation
entropy words (Zhao et al., 2019); and c) excep-
tion words (Zhao et al., 2018). Words in a) are
commonly said to cause generalization error, while
words in b) and c) are dubbed as under-translated
and troublesome words respectively according to
the papers. Here, we want to know whether those
probable trouble makers are barrier words who on
average cause the most performance degradation?

Since a) - c) all use global statistics for each word
v ∈ V , to compare with the generalization barriers
annotated with local risk, for each unseen input x,
we also use xi’s global statistical clue to annotate
itself in this local context so that overlap@k% can
be used for comparison. The statistics are denoted
as 1/freq(v), te(v), er(v) for inverse frequency,
translation entropy and exception rate. Translation
entropy of v is obtained through estimating the
lexical translation probability φ(w|v) and compute
the entropy of this distribution among all w ∈ V ′
(target vocabulary). Exception rate of a word v is
calculated through the ratio between the number of
exception alignment according to certain exception
condition and the total number of alignment of v
across the training corpus, M

v

Nv . Detailed introduc-
tion of the trouble makers is in Appendix A.3.

Table 3 demonstrates the overlap@k% values
for Zh⇒En and En⇒Zh. The random row shows

2146 words sorted via barrier rate
0.0

0.2

0.4

0.6

ba
rri

er
 ra

te top k=10%, freq>10

Figure 4: The distribution of barrier rate across words
with context count larger than 10 on NIST 03-06.

the metric values if we randomly choose an order
of the source words. It is obvious that all catego-
rizations are very close to random, with Entropy
slightly better than random, which indicates our
generalization barrier words that rely on statistics
from inference-aware counterfactuals are very dif-
ferent from other source-side word categories. This
highlights the novelty of such phenomenon, and
implies the importance of studying generalization
with explicit inference under consideration.

6.3 Context sensitivity of barriers

In this section, we try to aggregate local statistics to
obtain certain global understanding: is it possible
that some words are prone to be generalization
barriers in a context-agnostic way or the reverse.
We aggregate the top-k% words in each test input
and calculate their count. Specifically, if we assume
that one appearance of a word roughly represents a
context, we can calculate the probability of certain
detected barrier word of being an universal barrier
according to the following barrier rate:

p(v) =

∑
i Count

(
v|is Barrier(v) ∧ v ∈ xi

)
∑

i Count
(
v|v ∈ xi

)
(5)

We then summarize the distribution of each word’s
barrier rate in Figure 4. The two horizontal dashed
red lines are 0.3 and 0.05, indicating relatively
highly context-agnostic and context-sensitive re-
spectively. As you can see, there are few context-
agnostic barriers and most of the barrier words are
very sensitive to context, indicating the necessity
of mining large-scale training data with abundant
contexts (Schwenk et al., 2019a,b). To obtain an
intuition of the least/most context-sensitive barri-
ers, we list some of them in Table 4. We can find
that the least context-sensitive barriers are mostly
high-frequency function words (e.g. punctuation)
which tend to appear in all kinds of context; mean-
while the most context-sensitive barriers can be
very frequently used nouns having low contextual-
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p(v)
Least sensitive ’(’, ’?’, ’let’, ’actually’, ’regarding’, ’forth’, ’2006’, ’impact’, ’entire’, ’google’, ’dalai’ >0.3
Most sensitive ’management’, ’economy’, ’health’, ’finacial’, ’help’, ’technology’, ’level’, ’service’ <0.05
Not barriers ’on@@’, ’clear’, ’annual’, ’base’, ’town’, ’leadership’, ’v@@’, ’confidence’, ’television’ 0.0

Table 4: A set of detected barrier words that are least/most context-sensitive on NIST 03-06 En⇒Zh.

Arch. pair k=10% k=20% k=30%
random-random 18.61% 36.46% 50.12%

san-fconv 28.65% 45.03% 58.42%
san-rnn 25.46% 43.73% 57.68%

fconv-rnn 27.64% 45.52% 58.85%

Table 5: The overlap@k% statistics with respect to dif-
ferent architectural choices (on NIST03 Zh⇒En).

ity (Ethayarajh, 2019), while BPE token tends to
be less a barrier.

6.4 Relation to training data

In this section, we ask the question: although the
barrier words are very context-sensitive, do they
tend to be model-agnostic and caused largely by
what data the model is trained upon? We train
three representative model architectures rnn, cnn,
san and compute their pair-wise barrier precision
against a random baseline. Table 5 shows the over-
lap between different architectures. Although the
overlap is still relatively low, all of them are consis-
tently higher than the random baseline, indicating
that the same training data does contribute to the
learning towards similar barrier words. However,
there are many other factors that we do not control
in our experiments, for example, the order of the
training batches, aka learning curriculums are not
the same across different archs, which may still
contribute to the sensitivity of detected barriers.

7 Potential Usage: Reranking

The previous sections empirically show that it is
possible to improve translation quality by mod-
ifying some barrier words within the input, and
these findings motivate us to present one potential
usage of them in an automatic way through re-
ranking (Yee et al., 2019). Since in the re-ranking
process the reference translations are not avail-
able, we can not calculate the truncated mean for a
word any more. Therefore, we firstly enumerate all
words within the input and randomly edit each of
them; then we perform top-1 decoding for all edited
inputs to obtain re-ranking hypotheses. 2 Table 6

2This is similar to Algorithm 1 with S = Uniform except
that it collects hypotheses without calculating truncated mean.

Task Candidates Oracle ↑ Coverage ↑ Diversity ↓

Zh⇒En original 39.40 78.22 61.78
ours 42.78 (+3.38) 83.88 (+5.66) 57.21 (-4.75)

En⇒Zh original 32.31 72.10 59.98
ours 37.48 (+5.17) 79.62 (+7.52) 52.72 (-7.26)

Table 6: The comparison of various properties of the re-
ranking candidates generated between top-k decoding
over the original input (original) and top-1 decoding
over the randomly edited inputs (ours).

shows that the hypotheses collected from top-1 de-
coding over the edited inputs deliver higher oracle
performance, better translation recall and diversity
than top-k candidates over the original single in-
put, which is currently the common wisdom of re-
ranking for NMT. Actually, we find that, the usual
top-k candidates are very similar to each other and
the oracle translation seems to be a paraphrased ver-
sion of the highest model-scored one which might
be very hard for the reranking model to pick up,
instead the candidates generated by editing barriers
can recall the actual incorrectly or un-translated
parts of meaning of the source. Details for the
measures are introduced in Appendix A.4.

8 Conclusion and Future Work

In this paper, we identify and define a new phe-
nomenon in NMT named generalization barrier as
a media for understanding behavior of NMT model.
Simple approximation methods are investigated to
efficiently detect such generalization barrier words.
After large-scale detection on held-out test sets, we
find that barrier words are very context-dependent,
highly related to the training corpus and model-
sensitive. And they are very different from previ-
ously identified trouble makers in the source side.
These analyses somehow prove the complexity of
current NMT model and efforts or theories for bet-
ter understanding them in terms of its generaliza-
tion ability should continue. Future work involves
fundamental causal analysis of the emergence of
such phenomenon intrinsically through the lens of
the learned representation and representation con-
founding effect (Li et al., 2019) or extrinsically
through compositionality study of the input.
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Hal Daumé III. 2006. Practical Structured Learning
Techniques for Natural Language Processing. Ph.D.
thesis, University of Southern California, Los Ange-
les, CA.

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Confi-
dence modeling for neural semantic parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 743–753, Melbourne, Australia. As-
sociation for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In EMNLP.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi
Parikh, and Stefan Lee. 2019. Counterfactual vi-
sual explanations. In Proceedings of the 36th In-
ternational Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 2376–2384, Long Beach, California,
USA. PMLR.

Shilin He, Zhaopeng Tu, Xing Wang, Longyue Wang,
Michael Lyu, and Shuming Shi. 2019. Towards un-
derstanding neural machine translation with word
importance. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 953–962, Hong Kong, China. As-
sociation for Computational Linguistics.

Dan Hendrycks, Steven Basart, Mantas Mazeika, Mo-
hammadreza Mostajabi, Jacob Steinhardt, and Dawn
Song. 2019. A benchmark for anomaly segmenta-
tion. arXiv preprint arXiv:1911.11132.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution
examples in neural networks. Proceedings of Inter-
national Conference on Learning Representations.

Victoria Hodge and Jim Austin. 2004. A survey of out-
lier detection methodologies. Artificial intelligence
review, 22(2):85–126.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
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A Appendices

A.1 Mean performance

Task Model Train Dev. Test Avg.

Zh⇒En
rnn 35.02 41.02 37.73

fconv 40.02 45.58 43.04
san 38.46 47.85 45.17

En⇒Zh
rnn 39.12 22.57 16.61

fconv 40.91 24.96 18.43
san 41.67 26.31 19.50

Table 7: The average sense generalization performance
results on NIST benchmark measured by BLEU; note
that here Train is measured through single reference
while Dev. is measured by four references for the
Zh⇒En task, so for rnn, Dev. can surpass Train.

A.2 Evaluation metrics

overlap@k% The first metric we use for evaluat-
ing the accuracy of the estimated risk is based on
the overlap@k metric (Dong et al., 2018). Since
each source word xi is annotated with a risk ri via
exactly or approximately generating couterfactuals.
The risks then induce a ranking among the source
words. According to our Definition 3.2, the top-k%
risky words are treated as generalization barrier
words. So given two rankings of the same input,
we can choose their top-k% risky words and mea-
sure how they overlap with each other. Formally,
given two ranked list of words of the input x based
on two list of risks, τ1 and τ2 are their top-k risky
words, the overlap@k% metric is as follows:

overlap@k% =
τ1 ∩ τ2
k% · l , (6)

where l is the length of the source input.
Kendall’s coefficient concordance The sec-
ond metric for evaluting rank stability (vari-
ance) is called Kendall’s coefficient of concor-
dance (Mazurek, 2011). It is computed through
the following formula:

W =

∑n
i=1X

2
i −

(
∑n
i Xi)

2

n
1
12 · k2 · (n3 − n)

, (7)

where k is the number of rankings and n the num-
ber of objects. In our setting, k is 25 corresponding
to the 25 repeats of the simulation and n is the
source sentence length corresponding to the length
of ranks on all the source words.

A.3 Definition of troublesome words

In Section 6.2, we measure the similarity between
our identified generalization barrier words and
previouly proposed under-translated words (Zhao
et al., 2019) and troublesome words (Zhao et al.,
2018). Here, we give a detailed introduction to the
definition of them.
Under-translated words The under-translated
word v ∈ Vs (Zhao et al., 2019) is defined as the
word with its translation entropy larger than cer-
tain threshold. Each word’s translation entropy is
calculated from its translation probabilities φ(w|v)
which are count-based estimated from word align-
ments of the training set obtained through cer-
tain statistical word aligner, e.g. fast align (Dyer
et al., 2013). That is, for each v ∈ Vs, te(v) =∑

w−φ(w|v) · log φ(w|v), where w ∈ V ′. So we
can use te(v) of each word to annotate each source
sentence with every word with a global risk.
Troublesome words The troublesome word
v (Zhao et al., 2018) is defined as word that sat-
isfies certain exception condition, which is mea-
sured through an exception rate er(v) = Mv

Nv . Here,
Nv is the number of alignment pair (v, w) for any
w ∈ V ′, across the whole corpus obtained as well
with fast align; Mv is the number of exception
alignment pair where w has violated certain condi-
tions. Zhao et al. (2018) proposes three exception
conditions which result in similar performance, so
here we use only one of them for experiment. That
is, the word probability Pθ̂(yt = w|y<t, x) falls
below certain threshold p0. The same with the
under-translated word, we use er(v) to label each
source word.

A.4 Measures for evaluating the re-ranking
candidates

In Section 7, we use three measures to character-
ize the candidates generated by top-1 beam search
from several randomly edited sources via barrier
words and commonly used top-k beam search re-
sults from the original source input. Here, we give a
detailed description of those measures. We denote
the hypo candidates generated from source-editing
top-1 beam search and top-k beam search as C1
and C2. To be fair, the two collections of hypo
candidates have same size, that is |C| = |C2|.
Oracle Given the reference y∗, a set of candidates
Ci (i ∈ {1, 2}), the oracle value of Ci is:

O(Ci, y∗) = max
ŷ∈Ci

BLEU(ŷ, y∗), (8)
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where the function BLEU denotes the sentence-
level smoothed BLEU (Lin and Och, 2004) in all
our experiments. The larger the oracle value is, the
better the candidates are.
Coverage Given the reference y∗, a set of candi-
dates Ci (i ∈ {1, 2}), the coverage value of Ci is:

C(Ci, y∗) =
1-Gram(y∗) ∩ ∪ŷ∈Ci1-Gram(ŷ)

1-Gram(y∗)
,

(9)
where 1-Gram(·) denotes the different 1-grams of
the sentence ·. The layer the coverage value is, the
better the candidates are.
Diversity Given a set of candidates Ci (i ∈ {1, 2}),
the diversity value of Ci is:

D(Ci) =
1

|Ci| ∗ (|Ci − 1|)
∑

ŷ∈Ci,ŷ′∈Ci

BLEU(ŷ, ŷ′),

(10)
where ŷ 6= ŷ′. That is we use the sentence-level
smoothed BLEU for comparing the difference be-
tween any two candidates and average them all.
So the smaller the diversity value is, the better the
candidates are.



13

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 5: The all 28 words’ histogram via exhaustive editing each words


