
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Understanding Learning Dynamics for Neural Machine Translation

Anonymous EMNLP submission

Abstract

Despite the great success of NMT, there still
remains a severe challenge: it is hard to in-
terpret the internal dynamics during its train-
ing process. In this paper we set up to un-
derstand learning dynamics of NMT by us-
ing a recently proposed technique named Loss
Change Allocation (LCA). As a NMT model
typically employs a large-scale neural architec-
ture, the brute-force implementation of LCA
suffers two challenges in both computation
and storage, and thus we present an improved
approach to put it into practice. On two stan-
dard translation benchmarks, our approach is
proved to be efficient and intensive experi-
ments reveal some valuable findings.

1 Introduction

Neural Machine Translation (NMT) has witnessed
a great success in recent years (Wu et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017). The
main reason is that it employs a mass of parameters
to model sufficient context for translation decision,
and in particular enjoys an end-to-end flavor for
training all these parameters. Despite its success,
there still remains a severe interpretation challenge
for NMT: it is hard to understand its learning dy-
namics, i.e., how do the trainable parameters affect
a NMT model during its learning process?

Understanding learning dynamics of neural net-
works is beneficial to identify the potential train-
ing issues and further improve training protocols
for neural networks (Smith et al., 2017; McCan-
dlish et al., 2018). Existing works on understand-
ing learning dynamics have been extensively in-
vestigated in classification tasks (Shwartz-Ziv and
Tishby, 2017; Raghu et al., 2017; Li et al., 2018;
Bottou et al., 2018; des Combes et al., 2019)
and language modeling (Saphra and Lopez, 2018,
2019). To the best of our knowledge, there is cur-
rently no attempt at understanding the learning dy-

namics for NMT, although it is acknowledged that
the training process is critical to make advanced
NMT architectures (like transformer) successful.

In this paper, we thereby propose to understand
learning dynamics of NMT. Specifically, we extend
a technique named Loss Change Allocation (LCA)
from computer vision (Lan et al., 2019) to NMT
scenario. The key behind LCA is to decompose the
overall loss according to individual parameter for
each update during the training process. By sum-
ming up the LCA values of a parameter between
two update time steps, we are able to quantify how
effective parameters are to the loss decrease in
this learning phase (§2.1). Unfortunately, unlike
the network in comptuer vision, NMT employs a
sequence-to-sequence architecture with massive pa-
rameters and requires large-scale data for training,
and thus the brute-force implementation of LCA
suffers from challenges in both computation and
storage on standard translation tasks. To this end,
we instead propose an improved implementation
approach to put it into practice: it approximately
calculates gradient for speedup in computation and
designs two additional tricks to address the stor-
age bottleneck (§2.2). On two standard translation
benchmarks, our approach is efficient and partic-
ularly intensive experiments reveal the following
findings (§3):

• Parameters of the encoder (decoder) word em-
beddings and the softmax matrix contribute
very little to loss decrease;

• Parameters of both the last layer in encoder
and decoder contribute most to loss decrease;

• Word embeddings for frequent words con-
tribute far more to the loss decrease than those
for infrequent words.

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

2 Methodology

2.1 Loss Change Allocation
Loss Change Allocation (LCA) functions as a mi-
croscope for investigating deeply into the train-
ing process of any models trained with stochas-
tic gradient methods (Lan et al., 2019). It is an
optimizer-agnostic methods for probing into fine-
grained learning dynamics. In raw wordings, LCA
tracks the contribution of each model parameter
θi ∈ θ to the loss change at every gradient update
during the whole training process, where i ∈ [K]
and K is the number of model parameters. The
basic idea of LCA is to take advantage of the first
order Taylor expansion of the loss to approximate
the loss change at each mini-batch update.

Recall that at each update t, the optimizer (e.g.
SGD) samples a mini-batch Bt from the train-
ing data for forward computation and then back-
propogates to update the parameters from θt to
θt+1. Given a dataset D, formally, the moment loss
change attributed to all the model parameters can
be first approximated and then decomposed on the
LCA value of each parameter θi as follows:

L(θt+1;D)− L(θt;D)

≈∇>θ L(θt;D) · (θt+1 − θt)

:=
K∑
i=1

Alca[t][i],

(1)

where each Alca[t][i] = ∇θiL(θt;D) · (θit+1 − θit)
and Alca[t][i] denotes the LCA value bound with
parameter θi at the update t.

Based on the above defined LCA value at each
update, one can readily attribute the loss decrease
L(θt2 ;D) − L(θt1 ;D) within an interval of mul-
tiple updates [t1, t2] to each parameter as follows:

L(θt2 ;D)− L(θt1 ;D)

≈
t2−1∑
t=t1

L(θt+1;D)− L(θt;D)

=

t2−1∑
t=t1

K∑
i=1

Alca[t][i] =

K∑
i=1

t2−1∑
t=t1

Alca[t][i],

(2)

where
∑t2−1

t=t1
Alca[t][i] is the attribution of loss

change bound with parameter θi and its value re-
flects the effectiveness of θi with respect to the loss
degradation on a certain dataset D between the up-
date interval. By inspecting the different choices of

update intervals, one is able to understand learning
dynamics in terms of the attribution of loss change
to each parameter.

2.2 Challenges and Solutions
Challenges However, unlike the scenario of com-
puter vision (Lan et al., 2019), in our scenario a
NMT model employs a large network and thus it
is challenging to obtain the matrix Alca in a brute-
force implementation. On the one hand, Eq.(1)
requires to calculate the gradient on the entire
dataset D at each update t and thus a relatively
large dataset leads to inefficiency in computation.
In our experiments, we are mainly interested in
two settings for D, i.e. the training dataset and a
held-out test dataset, which respectively measure
the training loss (model’s fitting ability) and test-
ing loss (model’s generalization ability). On the
other hand, since a NMT model typically contains
hundreds of millions parameters and parameter up-
dates are up to hundreds of thousands times during
training, it consumes super large storage to main-
tain Alca on the hard disk, which is impractical in
implementation.

Solutions To address both challenges, we pro-
pose some tricks to improve the implementation
of LCA. Firstly, inspired by SGD (Bottou, 2010),
at each update, we instead re-sample a new mini-
batch to be a representative of the entire dataset D
and approximately calculate the gradient on this
mini-batch rather than the gradient on D. With this
trick, training with LCA only doubles the speed
compared to the standard training for NMT. In Sec-
tion 3.2, we will empirically validate the rationality
of this sampling approach with simulated experi-
ments.

In addition, we store the LCA value once for
every 15 updates via averaging the LCA values for
those steps:

Ālca[t][i] =
1

15
·

15(t+1)∑
t′=15t+1

Alcs[t
′][i], (3)

for t beginning with 0. Furthermore, we divide the
model parameters into several groups and calcu-
late LCA value for each group g rather than each
parameter i as follows:

Ālca[t][g] =

∑
i∈g Ālca[t][i]

|g|
, (4)

where |g| denotes the number of parameters within
that group. More precisely, we mainly study LCA

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

en_emben1 en2 en3 en4 en5 en6
de_embde1 de2 de3 de4 de5 de6

de_softmax
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Oc

cu
py

 ra
tio

 %

14

0

8
9 11 10

4

12

2

7 6
5

3

1

13

14

0

7
9 11 10

2

13

4

8
6

5
3

1

12

Kendall's rank correlation: 0.905
approx.
exact

Figure 1: Evaluation of the sampling trick.

for the following parameter groups: word embed-
ding in encoder (en emb); l-th layer parameters
in encoder (enl); l-th layer parameters in decoder
(del); word embedding in decoder (de emb); soft-
max matrix in decoder (de softmax). In this way,
both dimensions of Ālca are much less than those
of Alca in the original implementation, and thus it
is affordable to compute Ālca during training.

3 Experiments and Analyses

3.1 Data and model

We conduct experiments on two translation bench-
marks IWSLT14 De⇒En and WMT14 En⇒De.
We use the Transformer base (Vaswani et al., 2017)
from fairseq (Ott et al., 2019) for training and gath-
ering LCA matrix as presented in section §2.2. Our
NMT systems respectively achieve BLEU points
of 34.4 and 27.7 on the test sets for IWSLT and
WMT tasks, which are close to the state of the art.

3.2 Evaluating the sampling approximation

To prove the effectiveness of our approximation
on gradient calculation, we conduct a simulated
experiment as follows: we randomly sample 10K
sentences from the IWSLT translation task and em-
ploy this small sampled data as the training data for
running the brute-force approach. Figure 1 demon-
strates LCA values’ occupation ratios of each mod-
ule group in the Transformer described in §2.2.
As shown in Figure 1, the ranking between our
approach (approx.) and brute-force approach are
highly similar, with Kendall’s rank coefficient as
0.905 (Kendall, 1938). So we adopt our approach
to calculate LCA for subsequent analyses.

3.3 Experimental analyses

We conduct two main categories of analyses accord-
ing to LCA: i) cumulative analysis: which tracks

(a) (b)

Figure 2: The cumulative LCA value of the sparse and
dense weights of the Transformer.

the cumulative LCA values from the beginning of
training to the end; ii) interval analysis: which
tracks the LCA values of each groups of model pa-
rameters during certain interval (t1, t2) of training.

3.3.1 Learning of sparse and dense weights
Currently sequence-to-sequence learning enjoys
an explicit differentiation between encoder and de-
coder. This explicit separation may provide a bottle-
neck of gradient flow from the loss to the encoder.
We visualize the cumulative LCA value of sparse
and dense weights of Transformer in Figure 2.

Overall speaking, dense weights from encoder
and decoder contribute similarly both on train and
test. However, the sparse embeddings both con-
tribute very little. This might because that the up-
date frequency of dense weights is much larger than
the sparse weights. However, the dense softmax
weigths’s LCA value (decoder’s output embedding)
is still far less than those middle layers.

3.3.2 Layer-wise learning dynamics
To analyze the layer-wise contribution of each en-
coder and decoder layer, we summarize the cu-
mulative LCA value of each dense layer in Fig-
ure 3. There is an interesting sandwitch effect of
the encoder where the beginning and the end layer
contribute the most while the layer in between con-
tribute less. For the decoder layers, the more higher
the layer, the more contribution it makes to the loss
change. It is very clear that from this modular view,
different neural blocks provide similar effects on
loss change for both training and test datasets.

To further understand the convergence property
shown in Raghu et al. (2017): that lower layer con-
verges earlier. We draw the interval LCA values
along the whole training process in Figure 4. As
you can see, higher layers tend to have smaller
LCA values which means they contribute more

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) (b)

Figure 3: The cumulative LCA value of the layerwise dense parameters of the encoder and decoder on the two
datasets, as a zoom-in of Figure 2’s en/de dense bars.

(a) (b) (c)

Figure 4: The interval LCA value on the IWSLT14 dataset allocated on different modules along training.

than lower layers generally at any training inter-
val, functioning as an evidence that higher layers
continue to evolve representations.

3.3.3 Learning of the embeddings
As the vocabulary size is large, we can not visualize
the behaviors for the embedding of every word.
We thereby split the vocabulary into 25 groups
according to word frequency. Figure 5 visualizes
the cumulative LCA values for all groups sorted
by word frequency. From this Figure, one can
clearly see that words with very high frequency
occupy most LCA values than lower frequency
words on both training and test datasets. This fact
further provides an explanation for the well-known
question, i.e. why infrequent words are difficult to
be translated but frequent words are easy for NMT.

4 Conclusion

In this paper we propose to use Loss Change Al-
location (LCA) (Lan et al., 2019) for understand-
ing learning dynamics of NMT. As a NMT model
typically employs a large neural network in archi-
tecture, the brute-force implementation of LCA
suffers from two challenges in both computation
and storage, we instead present an improved ap-
proach to put it into practice for NMT scenario.

(a) (b)

Figure 5: The cumulative final LCA value of sparse and
dense embeddings divided by word frequency; the vo-
cabulary is divided into 25 equal-sized groups, with last
16 groups shown as one large group of low-frequency
words (the 10-th group).

Our experiment shows that the proposed approach
is efficient and intensive experiments reveal some
valuable findings: parameters of encoder (decoder)
word embeddings and softmax matrix contribute
less to loss decrease and those of the first layer in
encoder and the last layer in decoder contribute
most to loss decrease during the training process.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

References
Léon Bottou. 2010. Large-scale machine learning

with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2018.
Optimization methods for large-scale machine learn-
ing. Siam Review, 60(2):223–311.

Remi Tachet des Combes, Mohammad Pezeshki,
Samira Shabanian, Aaron C. Courville, and Yoshua
Bengio. 2019. On the learning dynamics of deep
neural networks. International Conference on
Learning Representations 2019.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org.

Maurice G Kendall. 1938. A new measure of rank cor-
relation. Biometrika, 30(1/2):81–93.

Janice Lan, Rosanne Liu, Hattie Zhou, and Jason Yosin-
ski. 2019. Lca: Loss change allocation for neural
network training. In Advances in Neural Informa-
tion Processing Systems.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. In Advances in Neural Information
Processing Systems, pages 6389–6399.

Sam McCandlish, Jared Kaplan, Dario Amodei, and
OpenAI Dota Team. 2018. An empirical model of
large-batch training. ArXiv, abs/1812.06162.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In NAACL-HLT.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and
Jascha Sohl-Dickstein. 2017. Svcca: Singular vec-
tor canonical correlation analysis for deep learning
dynamics and interpretability. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 6076–
6085. Curran Associates, Inc.

Naomi Saphra and Adam Lopez. 2018. Language mod-
els learn POS first. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 328–330,
Brussels, Belgium. Association for Computational
Linguistics.

Naomi Saphra and Adam Lopez. 2019. Understand-
ing learning dynamics of language models with
SVCCA. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),

pages 3257–3267, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ravid Shwartz-Ziv and Naftali Tishby. 2017. Opening
the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. 2017. Don’t decay the learning rate, increase the
batch size. ArXiv, abs/1711.00489.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Gregory S. Corrado, Macduff
Hughes, and Jeffrey Dean. 2016. Google’s neu-
ral machine translation system: Bridging the gap
between human and machine translation. ArXiv,
abs/1609.08144.

https://arxiv.org/pdf/1809.06848.pdf
https://arxiv.org/pdf/1809.06848.pdf
https://arxiv.org/abs/1705.03122
https://arxiv.org/abs/1705.03122
https://arxiv.org/pdf/1909.01440.pdf
https://arxiv.org/pdf/1909.01440.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
https://doi.org/10.18653/v1/W18-5438
https://doi.org/10.18653/v1/W18-5438
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf

