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Abstract

Despite the great success of NMT, there still
remains a severe challenge: it is hard to in-
terpret the internal dynamics during its train-
ing process. In this paper we set up to un-
derstand learning dynamics of NMT by us-
ing a recently proposed technique named Loss
Change Allocation (LCA). As a NMT model
typically employs a large-scale neural architec-
ture, the brute-force implementation of LCA
suffers two challenges in both computation
and storage, and thus we present an improved
approach to put it into practice. On two stan-
dard translation benchmarks, our approach is
proved to be efficient and intensive experi-
ments reveal some valuable findings.

1 Introduction

Neural Machine Translation (NMT) has witnessed
a great success in recent years (Wu et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017). The
main reason is that it employs a mass of parameters
to model sufficient context for translation decision,
and in particular enjoys an end-to-end flavor for
training all these parameters. Despite its success,
there still remains a severe interpretation challenge
for NMT: it is hard to understand its learning dy-
namics, i.e., how do the trainable parameters affect
a NMT model during its learning process?

Understanding learning dynamics of neural net-
works is beneficial to identify the potential train-
ing issues and further improve training protocols
for neural networks (Smith et al., 2017; McCan-
dlish et al., 2018). Existing works on understand-
ing learning dynamics have been extensively in-
vestigated in classification tasks (Shwartz-Ziv and
Tishby, 2017; Raghu et al., 2017; Li et al., 2018;
Bottou et al., 2018; des Combes et al., 2019)
and language modeling (Saphra and Lopez, 2018,
2019). To the best of our knowledge, there is cur-
rently no attempt at understanding the learning dy-

namics for NMT, although it is acknowledged that
the training process is critical to make advanced
NMT architectures (like transformer) successful.

In this paper, we thereby propose to understand
learning dynamics of NMT. Specifically, we extend
a technique named Loss Change Allocation (LCA)
from computer vision (Lan et al., 2019) to NMT
scenario. The key behind LCA is to decompose the
overall loss according to individual parameter for
each update during the training process. By sum-
ming up the LCA values of a parameter between
two update time steps, we are able to quantify how
effective parameters are to the loss decrease in
this learning phase (§2.1). Unfortunately, unlike
the network in comptuer vision, NMT employs a
sequence-to-sequence architecture with massive pa-
rameters and requires large-scale data for training,
and thus the brute-force implementation of LCA
suffers from challenges in both computation and
storage on standard translation tasks. To this end,
we instead propose an improved implementation
approach to put it into practice: it approximately
calculates gradient for speedup in computation and
designs two additional tricks to address the stor-
age bottleneck (§2.2). On two standard translation
benchmarks, our approach is efficient and partic-
ularly intensive experiments reveal the following
findings (§3):

• Parameters of the encoder (decoder) word em-
beddings and the softmax matrix contribute
very little to loss decrease;

• Parameters of both the last layer in encoder
and decoder contribute most to loss decrease;

• Word embeddings for frequent words con-
tribute far more to the loss decrease than those
for infrequent words.
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2 Methodology

2.1 Loss Change Allocation
Loss Change Allocation (LCA) functions as a mi-
croscope for investigating deeply into the train-
ing process of any models trained with stochas-
tic gradient methods (Lan et al., 2019). It is an
optimizer-agnostic methods for probing into fine-
grained learning dynamics. In raw wordings, LCA
tracks the contribution of each model parameter
θi ∈ θ to the loss change at every gradient update
during the whole training process, where i ∈ [K]
and K is the number of model parameters. The
basic idea of LCA is to take advantage of the first
order Taylor expansion of the loss to approximate
the loss change at each mini-batch update.

Recall that at each update t, the optimizer (e.g.
SGD) samples a mini-batch Bt from the train-
ing data for forward computation and then back-
propogates to update the parameters from θt to
θt+1. Given a dataset D, formally, the moment loss
change attributed to all the model parameters can
be first approximated and then decomposed on the
LCA value of each parameter θi as follows:

L(θt+1;D)− L(θt;D)

≈∇>θ L(θt;D) · (θt+1 − θt)

:=
K∑
i=1

Alca[t][i],

(1)

where each Alca[t][i] = ∇θiL(θt;D) · (θit+1 − θit)
and Alca[t][i] denotes the LCA value bound with
parameter θi at the update t.

Based on the above defined LCA value at each
update, one can readily attribute the loss decrease
L(θt2 ;D) − L(θt1 ;D) within an interval of mul-
tiple updates [t1, t2] to each parameter as follows:

L(θt2 ;D)− L(θt1 ;D)

≈
t2−1∑
t=t1

L(θt+1;D)− L(θt;D)

=

t2−1∑
t=t1

K∑
i=1

Alca[t][i] =

K∑
i=1

t2−1∑
t=t1

Alca[t][i],

(2)

where
∑t2−1

t=t1
Alca[t][i] is the attribution of loss

change bound with parameter θi and its value re-
flects the effectiveness of θi with respect to the loss
degradation on a certain dataset D between the up-
date interval. By inspecting the different choices of

update intervals, one is able to understand learning
dynamics in terms of the attribution of loss change
to each parameter.

2.2 Challenges and Solutions
Challenges However, unlike the scenario of com-
puter vision (Lan et al., 2019), in our scenario a
NMT model employs a large network and thus it
is challenging to obtain the matrix Alca in a brute-
force implementation. On the one hand, Eq.(1)
requires to calculate the gradient on the entire
dataset D at each update t and thus a relatively
large dataset leads to inefficiency in computation.
In our experiments, we are mainly interested in
two settings for D, i.e. the training dataset and a
held-out test dataset, which respectively measure
the training loss (model’s fitting ability) and test-
ing loss (model’s generalization ability). On the
other hand, since a NMT model typically contains
hundreds of millions parameters and parameter up-
dates are up to hundreds of thousands times during
training, it consumes super large storage to main-
tain Alca on the hard disk, which is impractical in
implementation.

Solutions To address both challenges, we pro-
pose some tricks to improve the implementation
of LCA. Firstly, inspired by SGD (Bottou, 2010),
at each update, we instead re-sample a new mini-
batch to be a representative of the entire dataset D
and approximately calculate the gradient on this
mini-batch rather than the gradient on D. With this
trick, training with LCA only doubles the speed
compared to the standard training for NMT. In Sec-
tion 3.2, we will empirically validate the rationality
of this sampling approach with simulated experi-
ments.

In addition, we store the LCA value once for
every 15 updates via averaging the LCA values for
those steps:

Ālca[t][i] =
1

15
·

15(t+1)∑
t′=15t+1

Alcs[t
′][i], (3)

for t beginning with 0. Furthermore, we divide the
model parameters into several groups and calcu-
late LCA value for each group g rather than each
parameter i as follows:

Ālca[t][g] =

∑
i∈g Ālca[t][i]

|g|
, (4)

where |g| denotes the number of parameters within
that group. More precisely, we mainly study LCA
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Figure 1: Evaluation of the sampling trick.

for the following parameter groups: word embed-
ding in encoder (en emb); l-th layer parameters
in encoder (enl); l-th layer parameters in decoder
(del); word embedding in decoder (de emb); soft-
max matrix in decoder (de softmax). In this way,
both dimensions of Ālca are much less than those
of Alca in the original implementation, and thus it
is affordable to compute Ālca during training.

3 Experiments and Analyses

3.1 Data and model

We conduct experiments on two translation bench-
marks IWSLT14 De⇒En and WMT14 En⇒De.
We use the Transformer base (Vaswani et al., 2017)
from fairseq (Ott et al., 2019) for training and gath-
ering LCA matrix as presented in section §2.2. Our
NMT systems respectively achieve BLEU points
of 34.4 and 27.7 on the test sets for IWSLT and
WMT tasks, which are close to the state of the art.

3.2 Evaluating the sampling approximation

To prove the effectiveness of our approximation
on gradient calculation, we conduct a simulated
experiment as follows: we randomly sample 10K
sentences from the IWSLT translation task and em-
ploy this small sampled data as the training data for
running the brute-force approach. Figure 1 demon-
strates LCA values’ occupation ratios of each mod-
ule group in the Transformer described in §2.2.
As shown in Figure 1, the ranking between our
approach (approx.) and brute-force approach are
highly similar, with Kendall’s rank coefficient as
0.905 (Kendall, 1938). So we adopt our approach
to calculate LCA for subsequent analyses.

3.3 Experimental analyses

We conduct two main categories of analyses accord-
ing to LCA: i) cumulative analysis: which tracks

(a) (b)

Figure 2: The cumulative LCA value of the sparse and
dense weights of the Transformer.

the cumulative LCA values from the beginning of
training to the end; ii) interval analysis: which
tracks the LCA values of each groups of model pa-
rameters during certain interval (t1, t2) of training.

3.3.1 Learning of sparse and dense weights
Currently sequence-to-sequence learning enjoys
an explicit differentiation between encoder and de-
coder. This explicit separation may provide a bottle-
neck of gradient flow from the loss to the encoder.
We visualize the cumulative LCA value of sparse
and dense weights of Transformer in Figure 2.

Overall speaking, dense weights from encoder
and decoder contribute similarly both on train and
test. However, the sparse embeddings both con-
tribute very little. This might because that the up-
date frequency of dense weights is much larger than
the sparse weights. However, the dense softmax
weigths’s LCA value (decoder’s output embedding)
is still far less than those middle layers.

3.3.2 Layer-wise learning dynamics
To analyze the layer-wise contribution of each en-
coder and decoder layer, we summarize the cu-
mulative LCA value of each dense layer in Fig-
ure 3. There is an interesting sandwitch effect of
the encoder where the beginning and the end layer
contribute the most while the layer in between con-
tribute less. For the decoder layers, the more higher
the layer, the more contribution it makes to the loss
change. It is very clear that from this modular view,
different neural blocks provide similar effects on
loss change for both training and test datasets.

To further understand the convergence property
shown in Raghu et al. (2017): that lower layer con-
verges earlier. We draw the interval LCA values
along the whole training process in Figure 4. As
you can see, higher layers tend to have smaller
LCA values which means they contribute more
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(a) (b)

Figure 3: The cumulative LCA value of the layerwise dense parameters of the encoder and decoder on the two
datasets, as a zoom-in of Figure 2’s en/de dense bars.

(a) (b) (c)

Figure 4: The interval LCA value on the IWSLT14 dataset allocated on different modules along training.

than lower layers generally at any training inter-
val, functioning as an evidence that higher layers
continue to evolve representations.

3.3.3 Learning of the embeddings
As the vocabulary size is large, we can not visualize
the behaviors for the embedding of every word.
We thereby split the vocabulary into 25 groups
according to word frequency. Figure 5 visualizes
the cumulative LCA values for all groups sorted
by word frequency. From this Figure, one can
clearly see that words with very high frequency
occupy most LCA values than lower frequency
words on both training and test datasets. This fact
further provides an explanation for the well-known
question, i.e. why infrequent words are difficult to
be translated but frequent words are easy for NMT.

4 Conclusion

In this paper we propose to use Loss Change Al-
location (LCA) (Lan et al., 2019) for understand-
ing learning dynamics of NMT. As a NMT model
typically employs a large neural network in archi-
tecture, the brute-force implementation of LCA
suffers from two challenges in both computation
and storage, we instead present an improved ap-
proach to put it into practice for NMT scenario.

(a) (b)

Figure 5: The cumulative final LCA value of sparse and
dense embeddings divided by word frequency; the vo-
cabulary is divided into 25 equal-sized groups, with last
16 groups shown as one large group of low-frequency
words (the 10-th group).

Our experiment shows that the proposed approach
is efficient and intensive experiments reveal some
valuable findings: parameters of encoder (decoder)
word embeddings and softmax matrix contribute
less to loss decrease and those of the first layer in
encoder and the last layer in decoder contribute
most to loss decrease during the training process.
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